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SUMMARY

In this paper, stability of roll motion of fishing
vessels in oblique waves is treated as a dynamic
problem. A new non-linear mathematical model is
presented, in which the six degrees of freedom of
ship motions are allowed to interact, specially
through non-linear hydrostatic coupling inthe heave,
roll and pitch modes. Results of simulations are
given for a typical stern trawler. The results of
simulations are givenfor a typical sterntrawler. The
results suggest that subharmonic resonances in
oblique longwaves may be a source of risk for some
fishing vessels.

RESUMEN

En este trabajo la estabilidad del balance
de buques pesqueros en olas oblicuas se trata
como un problema dinamico. Un nuevo mo-
delo matematico no-lineal se presenta, en el cual
se considera interaccidén en los seis grados de
libertad, y en especial por medio de acopla-
miento hidrostatico no-lineal en los modos de mo-
vimiento vertical del centro de gravedad, balance y
cabeceo. Resultados de simulaciones son
presentados para un arrastrerotipico. Los resultados
indican que resonancias sub-arménicas en olas
largas y oblicuas pueden constituir una seria fuen-
te de riesgos para algunos tipos de buques
pesqueros.
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1 - INTRODUCTION

Alarge number of fishing vessels capsizings in
rough seas takes place each year (see Neves
(1990)). This may be indicative that compliance
with traditional stability criteria (IMO (1977)) —
essentially valid for calm water conditions— do not
represent an efficient safeguard for vessel integrity
at sea.

Stability in waves is an aspect of fundamental
importance for the safety of fishing vessels. Clearly,
this is a matter of dynamics, since large motions are
usually developed in a capsizing sequence. Addi-
tionally, it is well known that most ship capsizings
occur when a vessel is taking waves from astern.

In this paper, stability of roll motion at a given
ship speed in regular oblique waves is treated as a
dynamical problem. A new mathematical model,
valid for any wave incidence is presented, in which
six degrees of freedom of ship motions are allowed
to interact. Special attention is given to the heave,
roll and pitch modes, which are coupled together by
nonlinear hydrostatic terms.

The nonlinear equations of motion are then
cast into a particular form that corresponds to a set
of coupled Mathieu equations. It is pointed out that
this set of equations displays subharmonic reso-
nances, directly relatedto aninternal energy transfer
process, in which the energy content of different
modes are chanelled onto the roll mode.

Some relevant theoretical aspects are made
clear fromthe mathematical model, helping to get a
better understanding of the capsize of vessels in



astern waves. On the other hand, numerical simu-
lations are made, using a fourth-order Runge-Kutta
algorithm, in order to check the analitycal results.
Results of simulations are given for a typical stern
trawler. These results suggest that subharmonic
resonances in oblique long waves may be a source
of risk for some vessels.

2 - COORDINATE SYSTEM

Let (oxyz) be aright-handed coordinate system
fixed with respect to the mean position of the ship
with z vertically upward through the centre of gravity
of the ship, x in the direction of forward motion, and
the origin in the plane of the undisturbed free
surface, as shownin Fig. 1. The ship is supposed to
be rigid and to travel with a mean forward speed U
at an angle y to a train of regular waves, such that
x = O for following waves. The senses of the six-
degrees-of-freedom of motion about the mean po-
sitionare illustratedin Fig. 1, where q,,q,,andq, are
the linear displacements surge, sway and heave,
respectively; and q,, g, and g, are the angular dis-
placements roll, pitch and yaw, respectively.

~

Fig. 1 - The coordinate system

3 - NON-LINEAR EQUATIONS OF MOTION

The nonlinear equations of motion may in
general be expressed as

[M+A] {di(t)} + {B(a)} +{C()} = {Q, (1} (1)

If consideration is given to a non-linear for-
mulation of the roll damping due to roll motion and
all other damping actions are taken as proportional
to body velocities; if the restoring actions are as-
sumed to be well behaved and are then expressed
inthe form of multivariable Taylor expansions about
the mean position up to the 2nd. order, and con-
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sidering the null coefficients in the hydrodynamic
and hydrostatic terms due to geometric symme-
try of the hull, then eq. (1) referred to the coordi-
nate system described above may be written as.
(Fig 1A)

The M,, A, B,, C; elements in the first three
matrices of the left hand side of equation (2) rep-
resent inertia, added mass, damping and linear
restoring coefficients. The displacement and wave
excitation vectors have been expressed in the form
of six components:

The last matrix represent non-linear restoring
terms, suchthata C,, element represents asecond-
order influence in mode i due to displacements in
the j and k modes.

When non-linear restoring terms are disre-
garded, equation (2) is then equivalent to that given
by Salvensen, Tuck and Faltinsen (1971) and Kim,
Chou and Tien (1980).

Linear equations of ship motions in waves are
known to offer quite good results when the interest
is restricted to permanent solutions. Nowadays
their use is widespread. Yet these equations do not
offer any clear insight of the risks of ship capsize in
waves (apart from indicating where resonance is
likely to occur). As it will be made clear in the
following sections, the introduction of non-linear
second order restoring terms do reveal new dan-
gerous situations forthe ship inastern seas. This s,
in itself, a very good reason for naval architects to
face the complex field of non-linearities.
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4 - DETERMINATION OF COEFFICIENTS
4.1) Added mass, damping and exciting terms

Linear hydrodynamic actions for zero s-
peed have been determined by means of a
three-dimensional panel distribution method
based on Green'’s functions, see Newman (1977),
Inglis (1981), Esperanca (1982). This procedu-
re is thought to give quite accurate results for
hulls with low slenderness ratios, as it is the case
with typical fishing vessel hulls. For details on the
panel distribution employed and hydrodynamic co-
efficients calculated, see Neves, Pérez and
Sanguinetti (1988). Speed effects in the hydrody-
namic actions are introduced following the proce-
dure proposed by Salvensen, Tuck and Faltinsen
(1970).

4.2) Roll damping

Viscous roll damping has been determined by
means of the method described by Himeno (1981)
in which the roll damping moment is divided into
seven components, with explicit consideration of
bilge keel effect. These components are due to
friction, eddy-making, lift, wave-generation and bilge
keel. The roll damping moment is then expressed in
a quadratic form

B(e)=b,s +b, |2 |0

Details of the procedure may be found in
Pernambuco (1990).

4.3) Restoring terms

A detailled derivation of hydrostatic actions is
givenin Appendix A. The restoring actionsin heave,
roll and pitch are expanded in Taylor series, the
following notation being used:

Cy(22.6)=C,2+C, 08 +C0+[C,.22+C,,02+C, 07 +
Cye28+C2.0 +C, 0.0

C(z288)=C,2+C,0+C0+[C,7*+C,0%+C, 09+
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Cp20+C,20+C, 006
Ci(z00)=C,z+C,0+C.0+[C,.22+C_ 02+ C. 07 +

Cou228+C,,.20+C_ 0.0

The linear and non-linear restoring coefficients
are given in Tables 1 and 2 respectively.

TABLE 1

Linear Restoring Coefficients

C,=y A, C,=0 C,=-v .A,-X
G0 C.=Y.V.GM, C,=0
Cor=v A, X C;,=0 Cy=v.V GM

InTables 1 and 2the following notation is used:

Y - specific density

V - volume of displacement

A, - surface area

X, - longitudinal position of centroid of surface
area

Y, - transversal position of centroid of surface
area

Z, - distance between origin and centre of
gravity

I, - longitudinal moment of inertia of surface
area

|, - transversal moment of inertia of surface
area

GM; - transverse metacentric height

GM, - longitudinal metacentric height

5- STABILITY ANALYSIS

In order to investigate the behaviour of the
solutions in different conditions and to gain insight -
into qualitative characteristics of these solutions, it
is convenient to carry out a stability analysis of the
non-linear equations, prior to any exercise in nu-
merical simulation.
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In Tables 1 and 2 the following notatibn is uséd S

Y - specific density

V - volume of displacement

A - surface area

x - longitudinal position of centroid of surface area
y - transversal position of cen!roid of surface area
z - dist ince between origin and centre of gravity

I - longitudinal moment of inertia of surface area
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By considering a solution q(t) to be of the form

q(t) = e<(t) + u(t)

where o< (t) - solution of the linear equation
u (t) - pertubation superimposed to linear
solution

the so called linear variational equation of the
non-linear equation is obtained. A solution u(t)=0 is
considered stable when, for small initial conditions
u(t,), solution u(t) —> 0 whent —> oo, and is un-
stable otherwise, see Hahn (1967).

When this known technique is applied to
equation (2), a linear equation with time dependent
coefficients is obtained:

[M+A] {0} + [B,()]{u} + [Cl{u} + [D,()]{u} = 0 (3)

with the time-varying coefficients in B,(t) and
D,(t) being derived from the non-linear terms B(g)
and D(q), respectively. Matrix D,(t) is given as

00 0. 0 0

00 0 0 0o 0
00 |CuyztCys® C,..0 Coes04Cys2 | 0
00 [ Cud | [Cus?tCusB| | Cus? |0
00 [CoziCos®| [Cue®| |Cus?*Cus®|0

where Z (t), @ (t), 8 (t) represent the steady so-
lutions of linear equations in heave, roll and pitch,
respectively. Matrix B,(t) is obtained in a similar
way. Equation (3) is in the form of a set of three
mutually coupled Mathieu equations in heave, roll
and pitch, with the roll equation linearly coupled to
the sway and yaw equations, and the heave and
pitch equations linearly coupled to the surge equa-
tion.

A case of particular interest is that correspond-
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ing to % =0 in which g(t) = 0. In this case the equa-
tion corresponding to the perturbed roll motion
decouples from the heave and pitch equations,
resulting in

(1 +A, ), + Bl + Cu, + (CuZ(t) + Cys® (), =0 6)

where Z (t) = z,cos(Wet+3,)

0 (1) = 6,cos(w t+B,)

if the damping coefficient is represented as a
linear function of roll angular velocity.

This is a well studied equation. Itis known that
this equation may be unstable forsome condictions,
specially near the condition

See Kerwin(1955), De Kat an Paulling(1989),
w, being the roll natural frequency.

6 - STABILITY IN OBLIQUE WAVES

As shown by Neves(1981), in the case of
oblique waves, there are many more conditions of
possible instability when a set of Mathieu equations
are coupled together, that is, whenever

1=3,4,5

A= 1208

Considering n = 1 (see Hsu(1985) those con-
ditions corresponding to very short waves are
not of practical importance, since such wa-
ves do not contain much energy. So, this ana-
lysis will be restricted to three conditions,
viz.
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where

w, = [ YA, heave natural frequency
m+A,,

pitch natural frequency

Therefore, if this analysis points to three condi-
tions as potentially dangerous, simulations of the
non-linear equations will be carried out near these
conditions, to check on the relevance of these.

7 - NUMERICAL SIMULATION

A fourth order Runge-Kutta algorithm has
been used to perform numerical integrations of
eq. (2) near the resonance conditions pointed out
by the stability analysis as being potentially danger-
ous.

A typical transom stern hull form has
been chosen to numerically test the relevance of
the resonant motions. This hull has been tes-
ted experimentally in longitudinal waves at zero
speed of advance and showed great tendency to
unstabilize under parametric resonance, as shown
by Neves, Perez and Sanguinetti (1988).
More details of the hull form may be found in
Appendix B.

Fig. 2 shows the roll motion for the fishing
vessel in a condition of parametric resonance cor-
responding to the Mathieu instability condition w, =
2.w,. There is a marked instability in roll in this
condition. The fishing vessel is at an angle x = 0 to
the waves, and consequently there is no roll exci-
ting moment. Nevertheless the vessel rolls hea-
vily in less than 3 cycles, due to transfer of ener-
gy from the heave and pitch modes onto the roll
mode. Though this result is impressive, it does not
correspond to a common situation at sea. This is
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due to the fact that to reach a w, = 2w, condition in
a following sea it is required that the metacentric
height be quite small (suchthat 2.w,becomes small).
Even so, in the condition of Fig. 2 the waves are,
“per force”, quite short and steep (not common at
sea).

In following seas, longer waves would induce
parametric resonance at condition w, = w,. This
condition is reproduced in Fig. 3, where a weak
tendency to instability is found, with a small meta-
centric height. But in this case seven cycles are
required for the roll angle to reach 30 degrees. So,
it may be concluded that the w, = w, condition is not
risky for the vessel, as compared with the w, = 2w,
condition, since a slow instabilization may be easily
defused, either by a change in speed (U) orinwave
incidence ().

When the wave incidence y is taken diffe-
rent from zero, the vessel is then prone to instabili-
ties related to combinations of natural frequencies.
Fig. 4 shows instability when w_=w,-w, for a head-
ing x = 15° (oblique waves by the stern). The
metacentric heightwas takenas GM,=0.80 m, aquite
high value even for fishing vessels, and the en-
counter frequency is quite low. The linear response
(dotted line) shows a smooth behaviour. Yet, the
non-linear response (full line), after coinciding with
the linear response for about 20 seconds,
unstabilizes very quickly. Figs. 5 and 6 show the
heave and pitch motions at this condition. It is seen
that these modes remain stable, though they were
responsible for roll instability through an energy
transfer process. It should be noted that the wave
characteristics corresponding to the results givenin
Figs. 4, 5 and 6 are easily encountered at sea.
This is not the case with the wave considered in
Fig..2: .

The influence of obliquity of waves oninstability
may be appreciated in Fig. 7, where the same
tuning is applied to two different headings. In the
x=15° case, instability related to the combined
parametric resonance w, = W,-w, is present. But
when waves are aligned with the ship, combined
instability is not dangerous.

11 - CONCLUSIONS

The linear equations of motions do not de-
scribe some phenomena which are crucial to a
complete description of the behaviour of ships in
waves. Firstly, and very important for a stability
analysis near resonance conditions, viscous effects
are not taken into account in a linear formulation.
Secondly, the linear coupling of modes reduces the



possibility of resonance to no more than three
situations.

The analytical treatment presented reveals
that a ship taking waves from astern may be sub-
jected to a series of resonant conditions. Addition-
ally, the mathematical model herein given opens
the way to understand and explain how a ship may
attain large angles of roll when the encounter fre-
quency is low. This may be the case in oblique
waves by the sternwhenw,_ =w, - w,. Itis possible
tofind many descriptions inthe literature of accidents
in which large rolling developed at low frequencies
in moderate following seas. See, for example, Du
Cane and Goodrich (1962), Conolly (1972).

The numerical simulations indicate that some
of the parametric resonances revealed by the
mathematical model may be strong. On the other
hand, as the parametric resonances discussed
here are related to geometrical non-linearities, it is
possible to relate aspects of a hull form and its
tendency to roll heavily in astern seas.
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APPENDIX A
Non-Linear restoring actions

A.1 - Equation of Water Plane

Fig. A-1 shows the cross-section of a vessel
with two reference axes, AXYZ (inertial) and Gxyz
(fixed at G). At equilibrium, the two systems coin-
cide. Denoting linear displacements of G by x, y,
and z., and angular displacements by the modified
Euler angles @, 6 and vy, the coordinates of a point
in AXYZ are given as

X=X,+aXx+by+cz
Y-ys+ax+by+c,z

Z-Z,+ax+by+cz
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where a, b, ¢, i = 1, 2, 3, are the directional
cosines of axes Gx, Gy, Gz, respectively, obtained
from rotations ordered as vy, 6, g, see Goldstein
(1980).

The equation of water plane area is obtained
for Z = z, (see Fig. A-1), that is

Z, =2, - X'sin 6 + y'sin @.cos 6 + zCosa-cos 6
The water column at each point due to vertical
and angular displacements is h = z, - z, or
z, (cosgcos0-1) 25 tgo

h= - - X
S80SO 0s@€0S0

+ yigo (A1)
C0Sg

A.2 - Hydrostatic Actions

The buoyancy force acting on the hull is
C,(2s 2,0) ==YV, -y, hdA  (A2)
w
and the moments of this force in roll and pitch

are given as

0260, 8) =y, [C.yb,(z,4V2)] hidA + b, - y- V, BG (A3)

C(2,,8,0) =-v ], [cx+a,(z,V2) hdA -3, y- V,-BG (A4)

where y-  specific density
V,- inmersed volume at equilibrium
A, - water plane area

BG - distance between centres of gravity
and bouyancy at equilibrium.



After substitution of (A1) in equations (A2), (A3) and (A4), the following hydrostatic actions, valid for large
displacements, are obtained:

z, (cos@ cosb-1)A ‘ Z, A g6
Cy(Zs B, 0) = YV ———tebeia s X A0 Y A
COS@ cos6 Ccos@ coso coso
(A5)
c,(z,.9,0) = -y [z, (cose-cosb-1)+z.] y, A + y|xy-sine -

vl -singcosd +y [ z2 (cosacosb) tge + 2,z,. tga ] ‘A -

0
ytge-sindz, x, ‘A + ysingtgecosbz,y A -

vtgo. 72, (cos@€0s0-1)%+2% z,z,(cos@coso-1)
. 322 A-
2 C0S@-coso €0S@-coso
tgo tgo
y. —— .{ singtge-cosol, + singl -2:sinbtgel, | -
2 COSg
» z, (cos@.cos6-1)tgo z,1g6
ytgo: - X A-
CoSsg COS@

vig?s- { z, (Cos@cos6-1) +z, } YA +ySingcosdV, BG
(A6)

72 (cos@.cosb-1) tgb z,z, g0

Cy(24, 2,0) =7y [ +
COSg@ COS@

-2,sin6tgo
ipdilfspe—ia-yorevaiod Bnz, (cosecose-1) + Z, | sXA¢
Cosg

Y [z,sin6tgeyA]l  + y[-sine-ly+sina-cose-lxy]-
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i

-

B

COS@ * coSH

z,(cosgcosO-1)+z, J?
A+

z, (cos@ - cosB-1) + Z

tgo
ysing- { - :
COSg

z, (Cos@ 'cos6-1)+z,
tgo

COS@ * CosH

g sine-Vo-.%

where the following geometrical parameters

have been introduced:

A(z; 2,0) - waterplane area at (z,, @, 6)

X,(z,, @, 0) - longitudinal position of centroid of
A(z,, 2, 6)

Y, (4, @, 6) - tranversal position of centroid of
A(Z,.2.0)

l, (z5, @, 8) - longitudinal second momentof A(z,,
@, 0)

I, (Z5, 2. 60) - trag)sversal second momentof A(z,,,

gl

product of inertia of A(z,, @, 6)

I, (Ze ., 0)

A.3 - Hydrostatic Coefficients

The expressions for the hydrostatic ac-
tions given above (equations (A5), (A6) and (A7))
may be expanded in Taylor series up to the second
order. Expression (4) in the main text is obtained,
where, in accordance with the nomenclature intro-
duced:

aci
e T e © (A8)
anj o,
dc,
Cy =— if j £k (A9)
an, on, o,

COS@ - cosO

J.yfA-
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tg2 6
I, + tg%el }-
CO0S%g
G
J XA +
tgo -tg 6
xy i
coso
(A7)
S ol ‘
s — - (A10)

fori,j,k,1=3,4,5 wheren,=z;n,=g;n, =
0.

By straightforward derivation, linear hydrostatic
coefficients are obtained as indicated by expres-
sion (A8);these are givenin Table 1 inthe maintext.
Deriving twice equations (A5), (A6) and (A7), non-
linear hydrostatic coefficients are obtained as indi-
cated by expressions (A9) and (A10). The non-
linear hydrostatic coefficients are givenin Table 2in
the main text.

APPENDIX B
Particulars of vessel
The main characteristics of the transom stern

trawler used in the numerical simulations are listed
below.

Loy (m) length overall 25.91
L., (m) length between perpendiculars  22.09
B (m) beam 6.86
D (m) depth 3.35
T  (m) draught 2.48
A  (ton)displacement 170.30



<X *7\' X >

(m?) water plane area 121.00
(m) longitudinal centroid of A, -0,68
(m) transversal radius of gyration 2.68
(m) longitudinal radius

of gyration 5.52

l,  (m) length of bilge keel 0.3L,, 10 0.8,
b, (m) width of bilge keel 0.15

The general arrangement and lay-out of the
fishing vessel are given below.

O
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